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Abstract. The path integral treatment of the hydrogen atom in a spherical space is discussed. 
The dynamical group SU( 1 , l )  of the system is used for path integration. By mapping the 
radial path integral onto the SU(1, 1) manifold, the energy spectrum and the normalised 
wavefunctions are obtained. In the flat space limit, the standard hydrogen spectrum and 
the corresponding normalised energy eigenfunctions are recovered. The scattering states 
are also found in the limit. 

1. Introduction 

Quantum mechanics of the Kepler problem in a spherical space was first solved by 
Schrodinger [ 11. In fact, he considered this problem as an example that can be handled 
by the factorisation method but is difficult to tackle in any other way. Soon after, 
however, Stevenson [2] succeeded in finding the solution by a conventional method. 
Recently, an algebraic method has also been used to obtain the solution by recognising 
that the system has an SU(1, 1) dynamical symmetry [3]. The purpose of the present 
paper is to report that the Kepler problem in the curved space can also be solved by 
path integration if the integration is done over paths in the dynamical group manifold. 

It is generally true that solving Schrodinger’s equation for a given system is easier 
than calculating Feynman’s path integral for the same system. However, in recent 
years, there have been considerable developments in path integration techniques. It 
has been seen to be particularly useful to incorporate the dynamical symmetry into 
the path integral [4-81. In fact, the dynamical symmetry is more than an heuristic 
guide in constructing a path integral. The dynamical group manifold presents itself 
as an arena on which path integration may explicitly be carried out. The Kepler 
problem in a spherical space as treated here is indeed an example that is path integrable 
in the dynamical group manifold. The present path integral calculated for the Kepler 
problem not only suggests a link underlying the methods of factorisation, algebraisation 
and path integration but also indicates that the path integral method has become 
capable of handling a problem such as the one Schrodinger once considered difficult 
to tackle. 

In the flat-space limit R + CO our solution coincides with the well known result for 
the hydrogen-like atom. Although the path integral treatments of the hydrogen atom 
are available [9, lo], the present calculation provides another path integral approach 
to the hydrogen problem in flat space. 
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In 0 2 ,  we construct a path integral pertinent to the Kepler problem in a spherical 
space. Then in 0 3 we convert the result into an SU( 1 , l )  path integral to find the 
energy-dependent Green function for the Kepler problem. Section 4 deals with the 
resultant energy spectrum, the normalised wavefunctions and their flat-space limits. 

2. Path integral for the Coulomb problem in spherical space 

The spherical space in question is a uniformly curved space with a positive curvature. 
Let the curvature be K = 1 / R 2 >  0. Then the line element d s  of the space is given in 
polar coordinates by 

ds2  = f ( r )  dr2+  r2(d02+sin’ 8 d4’) ( 2 . 1 )  

where f( r )  = ( 1  - r2/ R 2 ) - ’ .  It can also be put in the form 

ds2=R2dX’+ R2sin2x(d8’+sin2 Odd’) 

where sin x = r/R, x E [0, 771.  The Lagrangian for the Coulomb problem in this space 
is 

( 2 . 3 )  

where M is the mass of a particle moving in the central potential V =  
- ( Z e 2 / r ) ( l  - r2/R2)”2.  

L = f MS2 + (Ze’ /  R ) cot x 

For this system we consider the following path integral: 

P(r’’, r‘; 7)  = { exp( 5 ( L +  E )  dt)D’r( t )  (2.4) 

which is the object referred to earlier as the promoter [ l l ] .  From ( 2 . 4 ) ,  the energy- 
dependent function G (  r”, r’; E )  and the propagator K ( r ” ,  r’; t” - 1 ’ )  can be evaluated, 
respectively, by 

G(r” ,  r’; E )  = - P(r”,  r‘; T )  d 7  ( 2 . 5 )  i R  ‘ 5  
K (r”, r ’ ;  t” - t ’ )  = - 

2 77h 

with t “ >  t ‘ .  The polar coordinate representation of the path integral (2.4) in the 
time-sliced version is 

P ( r ” ,  r’; T )  = lim 
N-cr 

N - l  

, = I  
x n $ R 3  sin’x, dx, sin e, de, d4,. ( 2 . 7 )  

Note that as x E [0, 771 the range of r is covered twice and therefore a factor $ has been 
included in the measure of ( 2 . 7 ) .  Here W, is the short-time action (Hamilton’s 
characteristic function for a short-time interval 7,) given by 

M Z e  ’ 
l , - l  2 7, R 

W ,  = ‘ I  ( L + E )  dt  = - ( As, l 2  +- 7, cot x, + ET,. ( 2 . 8 )  
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As usual, we have set r, = r ( t , ) ,  t ' =  io, t " =  t N  and I, = f, - t , - l .  Recall that in path 
integration all terms of O( I:+') with e > 0 may be ignored and that (Aq,)' - I ,  for any 
coordinate variable qJ. For a polar coordinate path integral in  flat space, it is known 
that the terms (A8)"  and ( A c $ ) ~  resulting from the expansion of (Ar,)' cannot be 
neglected. This is because ( A ~ ) ' / T ,  and ( A ~ ) " / T ,  appearing in the kinetic term are of 
O(r,). For a path integral in curved space, the book-keeping rules remain the same. 
However, the metric relation (2.1) holds only locally and cannot arbitrarily be extended 
to a finite interval. Therefore special care is needed. The sliced-time version of ( 2 . 2 )  
for an n-dimensional sphere S" has been shown to be [5]: 

(As,)'= 2R2(1 -cos U , ) +  n ( n  -2)h2r;/4M2R' (2.9) 

where cos w, = q, * q , - l .  For n = 3, q is given in polar coordinates as 

sin x sin 8 sin C$ 
sin x sin 8 cos C#J 

q = [  sin;;;se 1 (2.10) 

and hence 

cos w, = cos Ax, -sin x, sin x , -~(  1 -cos O j )  

with cos 0, = cos 8, cos 8,-, +sin 8, sin e,-, cos A4,. The short-time action (2 .8)  
becomes 

MR' MR' . 
W, = - ( 1  - cos Ax,) +- sin XI sin x,- ,( 1 - cos 0,) 

71 71 

Ze * 
+-r,COtXj+ E + -  

R ( *:& (2.11) 

Using the approximation (1 - cos Ax,) =f(Ax,)'  - &(Ax,)" valid in path integration and 
the formula for large a, Re a > 0, 

J x'" exp( -ax2 + bx4+ ~ ( x ' ) )  dx = ~ x'" e ~ p ( - a x ~ + 3 6 / 4 a ' + O ( a - ~ ) )  dx (2.12) 
0 0 

we may replace the fourth-order term (Ax,)" by an equivalent one; namely, 

- ( MR '/ 241, ) (AX, )" - h ' I ,  / 8 MR '. 
Therefore the short-time action (2.1 1)  can effectively be written as 

MR' MR' Ze' 
2 TJ 7, R 

w, =- (Ax, )' + - sin' x,( 1 - cos 0,) + - I, cot x, + ( E  + h'/2 MR')I, (2.13)  

where we have set %' x, =sin x, sin x , - ~ .  The energy shift by h2/2MR2, seen in (2 .13) ,  
has also been obtained for a free particle in a space of constant curvature from a 
different aspect [12]. By employing the asymptotic expansion for large 121 

( I -m) !  
exp[iz(l-cos@,)]=- C C (21+1)-  exp(imA4,)PY cos 0, 

2 z  / = o m = - /  ( l + m ) !  

i "  I 

x P;"(cos exp[-iI(l+ 1)/22] (2.14) 
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we carry out the integration over 6, and 4, of (2.7) to separate variables as [13]: 
. I /  

P ( r ” ,  r’; T )  = C C P,(r”,  r‘;  T )  Y;”*( e’, 4’) Y?(  e”, 4”) (2.15) 
I = O  m = - l  

where 

(2.16) 

with 

Ze 
2 M R 2 Z 2 x J  R 

~,+-7;cotx,+ 
MR 1(1+ 1)h’ 

2 7, 
W, =- (AxJ)’- (2.17) 

In this manner, we have constructed a path integral pertinent to the Coulomb problem 
in a spherical space. Our next task is to evaluate the radial path integral (2.16). It is 
certainly difficult to perform the path integration of (2.16) in the standard path integral 
technique. 

3. Realisation of the dynamical symmetry group by an SU(1,l)  path integral 

To tame the wild-looking path integral (2.16), we make use of the dynamical symmetry 
S U ( 1 , l )  discussed for the algebraisation of the same Coulomb problem [3]. First, as 
in [3], we transform the variable x into a new one ,!3 by 

e’ = tanh(ix/2) (3.1) 

from which follows 
f i  n 

(Ax,)’= -cosech2 /3,[(A/3,l2+f(l -cosech* p,)(Ap,)4]. 
Since (3.1) is a complex transformation,,we are actually making an analytical continu- 
ation of (2.16) into the domain where O G R e x S  7~ and - c o < I m x s O  so that /3 E 

(-CO, +CO). At the same time, we also complexify Ze2/ R by setting 

K = ZeZ/iR (3.2) 

to find (Ze2/ R )  cot x = - K  cosh p. In addition to the change of variables, we rescale 
each local time interval T~ of (2.16) into uJ by [ l l ] :  

(3.3) 

(3.4) 

h 

uJ = ET, sinh‘ pJ 

U = $T sinh p ’  sinh p” 
such that 

where u = Z  U/ and T = Z  7,. 

After these transformations are made, the short-time action (2.17) is 

n h’ 
u,+4wJ cosech”, E+--K coshb, 

21(1+ 1) h’ 
MR2 ( 2MR- 

+ (3.5) 
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The second term of (3.5), which c%ins (A/3,)4, can be replaced as before with the 
aid of (2.12) by (A2a,/2MR2)(~-cosech’ p,)+O(a:). Furthermore, noticing that 

we write the radial path integral (2.16) as 

P,(r”, r’; T )  = -R-3(sinh p’sinh j3”)3/2 

where 

(21+ 1)2-: E ’ -  K E ’ +  K 
h2Uj+  Uj -  A Uj . MR’ 

U1 2MR2 sinh2( pj/2) cosh2( pj/2) 
W, =- [ l  -cosh(Ap,/2)]+ 

(3.8) 

In the above we have set E ‘ =  E +3h2/8MR2. 
The resultant path integral (3.7) is by no means simpler than (2.16) in appearance. 

However, we notice its similarity in structure to that for the modified Poschl-Teller 
potential which has been reduced to an SU( 1, 1) path integral [6]. In fact, the reduction 
procedure used for the Poschl-Teller potential is basically the same as that devised for 
converting the Rosen-Morse oscillator into a free particle in an SU(2) manifold [4,5]. 
Here we follow the same procedure. 

By employing the asymptotic relation valid for large /z1 and integer n 

e x p [ - ( n ’ - ~ ) / 2 ~ ] = ( ~ / 2 r r ) ’ / ~  exp[in4-z( l -cos  4 ) ]  d 4  

we introduce two additional angular variables 6 and 7) as 

x 

exp{ -- A sZh2(pJ/2) U’} = (- 

exp[ipA6,+(iMR2/h2) czh2(p, /2)(1 -COS At,)] d t ,  

MR2 sxh2(p,/2) 1 27rihu, 
i K - E ’  

x lo2= exp[iqA.r), -(iMR2/h’) Z h 2 ( P , / 2 ) ( 1  -cos  AT^)] d7, 

where we have set 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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both of which are assumed to be positive integers. Furthermore, we change the newly 
introduced variables 6, and 7, into Euler angles a,  and y, by 

= 6, - TJ yl = 61 + VJ (3.13) 

and 

(3.14) 

with a’= y’=O. Substitution of (3.10)-(3.14) into (3.7) results in 

P,( r”,  r’; T )  = (i/2R)3(sinh p’s inh p”)’ exp (2MR’[(21+1)2-dl) - 
i hu 

X jO*‘ d a ”  I 21r d y” exp( ( p  - q)a” + ( p  + q )  y ”) Q(p”,  p ’ ;  a”; y” ;  U ) .  
- 2 T i  

(3.15) 

Here the function Q(p”,  p ’ ;  a”; y ” ;  U )  appearing in (3.15) is an SU(1, 1) path integral 
expressed in terms of Euler variables ((U, p ,  y ) .  Namely, 

Q ( p ” ,  p ’ ;  a’?; y ” ;  U )  

with 

MR’ 

U1 

SJ =- [ 1 - cosh(fl1/2)] 

(3.16) 

(3.17) 

and 

cosh(fl1/2) = c%h2(p,/2) cos[(AaJ +Ay,)/2] - s zh2(pJ /2 )  cos[(ilaJ -Ay,)/2] (3.18) 

where we have changed the integration over p E ( -00, +CO) into two integrations over 
/3 E [ O ,  CO) as the integrand is symmetric in  p + -p. In this fashion, we have completed 
the conversion of the radial path integral (2.16) into a path integral on the SU(1, 1) 
group manifold. 

4. Performing the SU(1 , l )  path integral 

The SU(1, 1) path integral (3.16) has been evaluated and given by [6]: 

~ ( p ” ,  p ‘ ;  a”; y “ ;  U )  =? 1 C ( U +  1) exp[-(iu/h)~,]~:^’(g”g’-’) 
X 1 

2 r  A = *  2 J = O  

+s c j ‘ d s  2s tanh[.rr(s+ih)] 

x exp{ -(i U/ h C - I ,  ?+, J x  -- 
A = O . l / 2  0 

( A  1 Jg”g’-’ ) (4.1) 
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where C, = ( f i2/2MR2)[(2J+1)’-~]  and 

,y’,*l(gr’g’-l) = 2 exp(-ipa”) exp(-ivy”) v;.~,(P”) v:*”(P‘) (4.2) 
P. 1’ 

which are the SU( 1 , l )  group characters belonging to the unitary irreducible representa- 
tion of the fundamental series, 

p = J + 1 ,  J + 2, . . . 
p = - J - l ,  - J - 2 , .  . . 

p = ij, *;, . * . 

f o r A = +  
for A = - 

DY): J=-’+is  s s o  p=0 ,*1 ,*2 ,  ... forA=O 
for A = i. 

The Bargmann function V : , ( p )  used in (4.2) has the property V ; , ( P )  = (-1)”-”VC,,(p) 
and may be given explicitly by hypergeometric functions [14, 151. For example we 
have for A = + 
VL, , (P)  = N:,[~osh(P/2)]-”-”[sinh(P/2)]~-” 

{ 
J = - ’ O  1 1  

2 ,  , 2 ,  I . . .  I =  L o  

x 2 F , ( 1 - v + J ,  - v - J ;  l + p + v ;  -sinh2(P/2)) (4.3) 

with 

By integration of (4.1) over a” and y”, the radial promoter (3.15) becomes, using the 
above property of the Bargmann function, 

P,( r”, r’;  r )  = (i/R)3(sinh P‘sinh P ” ) 2  

(4.4) 

where .lo+ 1 = min(f1p - q( ,  ilp + q ( )  and A = 0 (j) for 25, even (odd). From (3.12) it is 
obviously that 

J , + l = $ ( p - q ) > O  

and therefore the D y )  series has been selected in (4.4). 
The radial energy function can be evaluated via (2.5) as 

(4.5) 

G , ( r ” , r ’ ;  E ) = ( i f i ) - ’  P,(r” ,  r’;  .,(E) du. (4.6) 

Note that d r / d u  = 4/(sinh P”  sinh p ’ )  and 

T ~ ~ 2  
( J 2 + J - 1 ’ - l )  d u =  [ 6 ( J -  I ) + 6 ( J + 1 +  l)]. Ix --3t e x p ( - i E  MR ) h ( 2 J + l )  (4.7) 

As 1 is a positive integer, only the discrete series with J = 1 contributes to (4.6). 
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Jo 2rrM 
G,(r", r'; E )  = -- sinh p 's inh p" 2 S(JO- n,- I )  

h 2 R  n ,  = O  

x vlt+ q ) /  2. Jo+ 1 ( p ') vi  p + q ) /  2 .  Jo+ I ( p ''1. (4.8) 

In  (4.8) we have shifted the summation over J into that over n, = J o - J .  The poles of 
(4.8) correspond to the energy eigenvalues of the system. From Jo = n, + I we have 
i ( p - q )  = n, where n = n,+ I +  1. Using (3.12) we find the energy spectrum 

MZ2e4 
( n 2 -  1) -- 

h 2  
2h2n2 E,  =- 

2 MR2 (4.9) 

where n = 1 , 2 , 3 , .  . . and K has been changed back to Ze2/iR by (3.2). This spectrum 
coincides with that obtained from other methods [ 1-31. 

The corresponding energy eignfunctions can be found by calculating the radial 
propagator 

K,(r" ,  r'; 1" -  

Note that S ( f ( E ) )  = 6 ( E  - E n ) / [ f ' ( E f l ) l ,  where E, is given by (4.9) and f ( E )  = 
JO(E)-n .  With (3.12) we obtain If)(E,)I = MR2n/fi2(&;+ n2), where E, = -R/an and 
a = h2/MZe'. The integration (4.10) yields 

K,(r",  r'; t " - t ' ) =  ) (4.11) 

with the normalised wavefunctions 

(4.12) 

Note that i ( p +  q )  = is,. 

the aid of the following formula: 
The Bargmann function appearing in (4.12) is for A = + and given by (4.3). With 

r ( b  - a)ryc) 
r(c - a ) r ( b )  

r(c - b)r(a) 

,F , (a ,  b;  C; z )  = ( - z ) - 0 2 F 1 ( u ,  a - c +  1; a - b + l ;  l / z )  

+ - b) r ( c )  ( - z ) - ~ , F , ( ~ ,  b - c +  1; b - a + 1; l / z )  

and using the relation 

we can express the Bargmann function in (4.12) as 

x [sinh(P/2)] n t i F ! r - 2 ' - 2  

x 2Fl( 1 - n + I, I - i E ,  + 1; 21 + 2; -sinh-'(P/2)). (4.13) 
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Transforming p back to x by (3.1) it follows that 

1 e-ix eix 
sin x = - sinh2(P/2) = - cosh2(/3/2) =- 

i sinh p 2i sin x 2i sin x 
we can write the radial wavefunction (4.1 1) in the form, 

R, , ( r )= N,, sin 'x e x p [ - i ~ ( n + i ~ , - I - l ) ]  

x 2 ~ , ( ~  - n + /, 1 -ie, + I ;  21+2; 1 -e"") 

with the correct normalisation factor 

(4.14) 

i ( n 2 +  e : )  r(i +iE, + i ) r ( i  + n + I )  
r ( ie ,  - I ) r ( n  - I )  Nn,=exp[i.rr(l+1+2n,)/2] 

(4.15) 

where r = R sin x. This solution is identical to that given by others apart from the 
normalisation factor [ 1-31. 

In the flat-space limit R + cc, the energy spectrum (4.9) for finite n goes over to 
the well known formula, E ,  = -MZ2e4/2h2n2.  However, for a large n, comparable 
with R, so that n = kR ( k  = constant), we obtain a continuous spectrum, E = h2k2/2M. 
By using the following limiting values: 

lim r F , ( l  - n + 1, 1 -is, + I ;  21+2; 1 -ezix)  = ,F,(l - n i l ;  21+2; 2 r / an )  
R - J r  

lim exp[-ix(n+ie,-I-1)] =exp( - r / an )  
R-ZC 

(4.16) 

we can reduce the radial wavefunction (4.14) to the standard flat-space result with a 
correct normalisation factor (see, e.g., [ 161): 

I" (2r /na) '  
2n(n-I-1)!  (21+1)! Rn1(r)=[(-33 ( n + ' ) !  ] - exp(-r /na)  , F I ( 1 - n + l ;  21+2;2r/na) .  

(4.17) 

For large n = kR we have E, = -l /ak.  Using relations similar to (4.16) we find the 
radial scattering wavefunctions by replacing the sum E,, by an integral 5," R dk:  

(2kr)'e-lk' , F , ( l + l + i / a k ;  21+2; 2ikr) (4.18) 

C,, = ( 2 k / ~ ) ' / ~ I r ( l  +I- i /ak) l  sinh"2(x/ak).  (4.19) 

This coincides with the result obtained by the usual analytical continuation consider- 
ation (see, e.g., [17]) except for a constant factor [ e x p ( 2 ~ / a k )  - 1]-"*. 

ck/ 
R k l ( r )  =(21+1)! 

5. Concluding remarks 

In the above, we have presented a method to solve the Coulomb problem in a uniformly 
curved space by path integration. Since this problem has been solved by other means 
[ 1-31, there is nothing new insofar as the solution is concerned. However, the present 
path integral treatment has brought about a couple of points worth reporting. 
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Firstly, the present calculation is inevitably related to the knowledge that the system 
has the SU(  1, 1) dynamical group [3]. After the angular contributions are separated, 
the radial path integral is mapped onto the dynamical group manifold of SU( 1, 1) and  
evaluated explicitly in terms of Euler angles. Thus, establishing the link between the 
dynamical group and the path integral, we have obtained the energy spectrum and the 
correctly normalised wavefunctions for the Coulomb system on a sphere. 

Secondly, by taking the flat-space limit, we are also able to find the standard results 
for the hydrogen-like atom. Therefore we have found another way of treating the 
hydrogen-like atom by path integration, which is totally new. As the SU( 1, 1) dynamical 
group is non-compact, it has not only discrete but also continuous representations. In 
a spherical system the continuous parts are completely suppressed. However, in the 
flat-space limit the continuous contribution is revived. In fact, by the flat-space limiting 
process we have derived the Coulomb energy spectra and the wavefunctions for the 
bound as well as the scattering states. 
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